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ABSTRACT

Technological constraints severely limit the rate at which analog-to-
digital converters can reliably sample signals. Recently, Tropp et
al. proposed an architecture, termed random demodulator (RD), that
attempts to overcome this obstacle for sparse bandlimited signals.
One integral component of the RD architecture is a white noise-
like, bipolar modulating waveform that changes polarity at a rate
equal to the signal bandwidth. Since there is a hardware limitation
to how fast analog waveforms can change polarity without undergo-
ing shape distortion, this leads to the RD also having a constraint on
the maximum allowable bandwidth. In this paper, an extension of
the RD, termed as constrained random demodulator (CRD), is pro-
posed that bypasses this bottleneck by replacing the original mod-
ulating waveform with a run-length limited modulating waveform
that changes polarity at a slower rate than the signal bandwidth. One
of the main contributions of the paper is establishing that the CRD,
despite employing a modulating waveform with correlations, enjoys
theoretical guarantees that are quite similar to the original RD ar-
chitecture. In addition, for a given sampling rate and rate of change
in the modulating waveform polarity, numerical simulations confirm
that the CRD can sample a signal with an even wider bandwidth
without a significant loss in performance.

1. INTRODUCTION

One of the defining characteristics of analog-to-digital converters
(ADCs) is the tradeoff between sampling rate and resolution. This
tradeoff exists, in part, because the capacitors used to build ADC
circuits take time to switch between charged and uncharged states,
forcing designers to limit either the sampling rate or the resolution
of an ADC [1, 2]. A rule of thumb for this rate–resolution tradeoff
is that a doubling of the sampling rate causes a 1 bit reduction in the
ADC resolution; in other words, 2B · fs = P , where B denotes the
effective number of bits (ENOB)—a measure of ADC resolution, fs
denotes the sampling rate, and the constant P is determined by the
state-of-the-art in ADC technology. Unfortunately, the constant P
in ADC technology increases at a much slower pace than that dic-
tated by Moore’s law for microprocessors [1, 2]. This forces many
applications to push the current ADC technology to the limit. For
example, software-defined radios require sampling rate on the order
of 1 GHz and therefore can only manage resolution of 10 ENOB
using today’s ADC technology [1].

Fortunately, the rate–resolution tradeoff of the ADC technology
can be circumvented by exploiting prior knowledge of additional
structure in signals. One such additional structure is signal sparsity;
it has been known for quite some time now that bandlimited signals
that are sparse in the frequency domain can be sampled at a rate that
is much smaller than the Nyquist rate [3]. This old idea has been

revisited in the past few years given the recent theoretical triumphs
in the area of compressed sensing [4]. In particular, while several
techniques have been put forward for sampling sparse bandlimited
signals at sub-Nyquist rates, three candidate architectures that rely
primarily on recent developments in compressed sensing are chirp
sampling [5], Xampling [6], and random demodulator [7]. Our fo-
cus in this paper is on the sampling of bandlimited signals that can be
well-approximated through a small number of frequency tones and
the random demodulator (RD) architecture seems particularly well-
suited for this specific problem, including near-optimal guarantees
for robustness against noise. Therefore we concentrate on the RD
architecture in this exposition, although some of the ideas presented
also appear to be of relevance to the Xampling architecture.

1.1. Our Contributions

One integral component of the RD architecture is a white noise-like,
bipolar modulating waveform that changes polarity at a rate equal
to the signal bandwidth. Since there is a hardware limitation to
how fast analog waveforms can change polarity without undergo-
ing shape distortion, the RD also has a constraint on the maximum
allowable signal bandwidth. This bottleneck is reminiscent of the
challenges faced by researchers in the early days of magnetic record-
ing systems. In magnetic disks, 0’s and 1’s are stored by magnetizing
and demagnetizing the recording media and the reading head reports
back the stored data as either positive or negative peaks in the read-
back voltage. Increasing the recording density on a magnetic disk by
packing more bits in a region causes the read-back voltage to rapidly
change polarity, leading to significant distortions in the peak ampli-
tudes, among other things, and causes a large number of read errors.

In order to overcome this challenge in magnetic recording sys-
tems, Tang and Bahl [8] introduced the idea of run-length limited
(RLL) sequences in which run-length constraints describe the mini-
mum separation, d, and maximum separation, k, between transitions
from one state to another. The idea in the case of magnetic recording
being that one can use (d, k) RLL binary sequences to increase the
number of bits written on the disk by a factor of (d+ 1) without af-
fecting the read-back fidelity. Note that there is a rate loss associated
with converting arbitrary binary sequences to (d, k) RLL binary se-
quences and the major breakthrough in magnetic recording was that
the rate loss associated with (d, k) sequences is smaller than d + 1,
leading to a net increase in recording density; we refer the reader
to [9] for further details on this topic.

In this paper, we make use of the lessons learned from the re-
search on magnetic recording systems and propose an extension of
the RD architecture, termed as constrained random demodulator
(CRD), that replaces the original RD modulating waveform with
a (d, k) RLL modulating waveform. This is quite similar in spirit
to the use of (d, k) sequences in magnetic recording systems and



Fig. 1. Block diagram of the (constrained) random demodulator [7].

clearly leads to an increase in the operating bandwidth of the RD
by a factor of (d + 1) without any hardware modifications. This
increase in the operating bandwidth however comes at the cost of
introducing statistical dependence across the modulating waveform.
One of our main contributions is establishing that the CRD, de-
spite employing a modulating waveform with correlations, enjoys
theoretical guarantees that are quite similar to the original RD archi-
tecture. In addition, one would expect an increase in the operating
bandwidth to lead to an overall reduction in the allowable sparsity
of the bandlimited signal. However, for a given sampling rate and
rate of change in the modulating waveform polarity, we find through
numerical simulations that the CRD can sample a signal with ap-
proximately 25% ∼ 35% more bandwidth without a significant
reduction in the signal sparsity.

2. BACKGROUND: THE RANDOM DEMODULATOR

In this section, we briefly review some of the key characteristics of
the RD architecture as they pertain to the sampling of sparse ban-
dlimited signals. We refer the reader to [7] for a comprehensive
overview of this architecture.

The basic purpose of the RD is to take samples at a sub-Nyquist
rate and still be able to reconstruct signals that are periodic, limited
in bandwidth to W Hz, and are completely described by a total of
S �W tones. In other words, a signal f(t) being fed as an input to
the RD takes the parametric form

f(t) =
∑
ω∈Ω

aωe
−2πiωt, t ∈ [0, 1) (1)

where Ω ⊂ {0,±1, ...,±(W/2 − 1),W/2} is a set of S integer-
valued frequencies and {aω : ω ∈ Ω} is a set of complex-valued
amplitudes. In order to acquire this sparse bandlimited signal f(t),
the RD performs three basic actions as illustrated in Fig. 1. First, it
multiplies f(t) with a modulating waveform pm(t) that is given by

pm(t) =

W−1∑
n=0

εn1[
n
W
,n+1

W

)(t) (2)

where the discrete-time modulating sequence (MS) {εn} indepen-
dently takes values +1 or −1 with probability 1/2 each. Next, it
low-pass filters the continuous-time product f(t) · pm(t). Finally, it
takes samples at the output of the low-pass filter at a rate ofR�W .

One of the major contributions of [7] is that it expresses the ac-
tions of the RD on a continuous-time, sparse bandlimited signal f(t)
in terms of the actions of anR×W matrix ΦRD on a vectorα ∈ CW
that has only S nonzero entries. Specifically, let x ∈ CW denote a
Nyquist-sampled version of the continuous-time input signal f(t).
Then it is easy to conclude from (1) that x can be written as x = Fα,
where the matrix F = 1√

W

[
e−2πinω/W

]
(n,ω)

denotes a (normal-

ized) discrete Fourier transform matrix and α ∈ CW has only S

nonzero entries corresponding to the amplitudes of the nonzero fre-
quencies in f(t). Now note that the effect of the modulating wave-
form on f(t) in discrete-time is equivalent to multiplying a W ×W
diagonal matrix D = diag(ε0, ε1, · · · , εW−1) with x = Fα. Fur-
ther, the effect of the low-pass filter on f(t) · pm(t) in discrete-time
is equivalent to multiplying an R ×W matrix H , which has W/R
consecutive ones starting at position rW/R+1 in the rth row ofH ,
with DFα.1 Therefore, if one collects the R samples at the output
of the RD into a vector y ∈ CR, then it follows from the preceding
discussion that y = HDFα = ΦRD · α, where we have that the
random demodulator matrix ΦRD = HDF .

Given the discrete-time representation y = ΦRD ·α, recovering
the continuous-time signal f(t) described in (1) is equivalent to re-
covering the S-sparse vector α from y. In this regard, the primary
objective of the RD is to guarantee that α can be recovered from y
even when the sampling rateR is far below the Nyquist rateW . For-
tunately, recent theoretical developments in the area of compressed
sensing have provided us with numerous greedy as well as convex
optimization based methods that are guaranteed to recover α (or a
good approximation of α) from y as long as the sensing matrix ΦRD
can be shown to satisfy certain geometrical properties [4]. The high-
light of [7] in this regard is that the RD matrix is explicitly shown to
satisfy the requisite geometrical properties as long as the sampling
rate R scales linearly with the number of frequency tones S in the
signal and (poly)logarithmically with the signal bandwidth W .

3. THE CONSTRAINED RANDOM DEMODULATOR

With the RD, it is possible to sample a sparse bandlimited signal at
a significantly lower rate than the Nyquist rate. Still at issue though
is the fact that the RD requires creation of a modulating waveform
that changes polarity at the Nyquist rate. Given the nature of ana-
log electronics, there is a hard bandwidth limit beyond which such
waveforms cannot be generated without shape distortion. Stated dif-
ferently, the RD makes use of a modulating waveform with an un-
constrained (d, k) = (0,∞) RLL MS that in turn determines the
maximum operating bandwidth of the RD architecture. On the other
hand, the basic idea behind the CRD is to replace the unconstrained
MS of the RD with an RLL MS with d > 0, thereby increasing the
operating bandwidth of the architecture by a factor of (d+ 1) with-
out any advances in the hardware technology. The only change to
the system is the replacement of the entries of the matrix D.

There is of course a price to be paid by using RLL sequences
to increase the addressable bandwidth. Specifically, recall that RLL
sequences place constraints on separations between different states
(transitions), which are characterized by the parameters d and k—
the minimum and maximum separation, respectively. Therefore the
price that we end up paying is that the elements of an RLL MS no
longer remain statistically independent. However, the key insight
here is that the dependence is only local and decays geometrically
to zero as the elements get farther away from each other. In the
following, we focus on one particular type of RLL MS for which
the elements are independent whenever they are separated by a fixed
number, say L. The following class of RLL MS have this particular
property, and we believe that other examples can be found.

Start by defining an RLL Bernoulli sequence, c = {ci} with
ci ∈ {0, 1}, as a sequence in which consecutive 1’s are separated by
at least d, and at most k, consecutive 0’s. Next, use 1’s in the RLL
Bernoulli sequence to specify transitions in the RLL MS, v = {vi}

1Here, and throughout the rest of this paper, it is assumed without loss of
generality that R divides W .



with vi ∈ {+1,−1}, generated from c as vi = (−1)civi−1. Now
define a block code, C, of all RLL MS exponentiated from RLL
Bernoulli sequences of length L that also begin and end with (d+1)
0’s. Notice that concatenation of any two codes in C produces a
(d, k′) RLL MS with

k′ =

{
k + 2d, L > k + 2(d+ 1)

∞, L ≤ k + 2(d+ 1)
.

In order to minimize L, we require that k = ∞ and that L satisfies
L ≥ 2(d + 1) + 1 = 2d + 3. We can now create RLL MS of arbi-
trary length if we concatenate sequences drawn independently from
C. Denote such a RLL MS as β = {βi}, and it has the following
property: ∀i, βi independent of βi+t if |t| ≥ L.

As an example, let us construct a code with L = 5, d = 1,
and k = ∞. C contains four sequences: (+1,+1,−1,−1,−1),
(−1,−1,+1,+1,+1), (+1,+1,+1,+1,+1), and
(−1,−1,−1,−1,−1). Sequences are chosen equally likely from
C and concatenated together to form a MS, β. If β is chosen in
such a way, then any two elements of the sequence, βi and βi+t, are
independent if |t| ≥ 5.

The structure of the RD matrix ΦRD is analyzed in [7]. Crucial
to the reconstruction of signals sampled by the RD is the satisfaction
of the Restricted Isometry Property (RIP) by ΦRD . The indepen-
dence of the MS and the independence of the rows of ΦRD are used
to show the satisfaction of the RIP. Our use of RLL sequences in the
CRD matrix, ΦCRD , introduces a dependent MS and dependence
among the rows of ΦCRD , and we must show that ΦCRD satisfies
the RIP. To accomplish this, we apply an argument similar to that
used in [10] for Toeplitz matrices and present results that show the
RIP is satisfied if elements of the MS are independent if sufficiently
separated. We can use this new analysis to show that ΦCRD satisfies
the RIP because RLL sequences exhibit this type of behavior. To this
end, we give the following theorem for which a proof will be given
in a future journal paper.2

Theorem 1 (Recovery of General Bandlimited Signals). Suppose
that the sampling rate, R, satisfies

R ≥ `3·C·S log6(W )

and that R divides W and ` = 2d + 3, d > 0. Draw a R ×W
CRD matrix ΦCRD using an RLL MS as described in Section 3 with
parameters (d, k =∞). The following statement holds, except with
probability O(W−1).

Suppose that γ is an arbitrary amplitude vector and ν is a noise
vector with ||ν||2 ≤ η. Let y = ΦCRDγ + ν be noisy samples
collected by the CRD. Then every solution γ̂ to the convex program
γ̂ = arg min ||v||1 subject to ||ΦCRDv − y||2 ≤ η approximates
the target vector γ

||γ̂ − γ||2 ≤ C max

{
η,

1√
S
||γ − γS ||1

}
where γS is a best S-sparse approximation to γ with respect to the
`1 norm.

4. IMPLEMENTATION ISSUES

In practice, the MS would be generated from a finite-state machine
(i.e. a pseudo-random binary sequence). The sequences consid-
ered up to now (the Rademacher sequence and RLL sequences with

2For d = 0, ` = 1 and the result of [7] is obtained.
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Fig. 2. Log-magnitude plot of the auto-correlation of an RLL code
as a function of the time separation. Larger values of d and smaller
values of k exhibit stronger correlation. The function for k = 20
is nearly identical to the function for k = ∞. For reference, an
independent sequence is given by d = 0 and k =∞.
k = ∞) require an infinite number of states. For this reason, we
also consider general RLL sequences generated from a Markov chain
with k <∞, of which the generation and correlation characteristics
has been analyzed [9, 11]. The Markov chain is stationary and has
2k+ 2 states described by a transition matrix P = {pij} [9]. While
current techniques do not prove that the dependence in such a se-
quence is local, the correlation decreases geometrically to zero as
the separation within the sequence grows. This leads us to believe
that these sequences will perform well as a MS in the CRD.

Calculation of the auto-correlation function Rx(m) for such a
sequence requires the vector a : ai =

∑2k+2

u=1
πupuiyui containing

the weighted sum of symbols transmitted on arriving at each state
and the vector b : bj =

∑2k+2

v=1
pjvyjv containing the weighted

sum of symbols transmitted on departing each state. Here, πu is the
uth entry of the stationary distribution for P and yij is the sym-
bol transmitted on departing state i and arriving at state j. Now
Rx(m) = bTP (m−1)a, where by stationarity, the auto-correlation
is a function of only the separation between elements [11].

Fig. 2 shows a plot of the auto-correlation function for several
(d, k) sequences. The correlation decays geometrically as m, the
separation in time, increases.

5. NUMERICAL RESULTS AND DISCUSSION

The RIP of a matrix Φ is important for the recovery of signals using
the techniques of compressive sensing. The RIP of order N with
restricted isometry constant δN is satisfied for Φ if∣∣∣∣ ||Φx||22 − ||x||22

||x||22

∣∣∣∣ ≤ δN (3)

with δN ∈ (0, 1) and ||x||0 ≤ N . Stated alternatively, singular
values of W × N sub-matrices of Φ satisfy

√
1− δN < σN <√

1 + δN .
The RIP is shown to hold for the RD [7] and for the CRD with a

particular RLL MS in Theorem 1. We do not have theoretical results
to show that it holds for a CRD using general RLL MS, but numer-
ical results suggest that it does. Fig. 3(a) shows the minimum and
maximum singular values as a function of d obtained by evaluating
several sub-matrices of a CRD matrix. The plot for k =∞ was ob-
tained using RLL MS described in Section 3 and for which Theorem
1 gives theoretical guarantees. The plot for k = 20 was obtained us-
ing general RLL MS described in Section 4. While we cannot give
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(b) k = ∞: Probability of successful recon-
struction vs. sparsity using the Basis Pursuit al-
gorithm for 1000 instances of Φ for each set of
parameters. The (x) and (o) marks are the RD
with a 150Hz and 200Hz signal. The (+) and
(♦) marks are the CRD with (d, k)=(1,∞) and
a 200Hz and 300Hz signal. The (*) marks are
the CRD with (d, k)=(2,∞) and a 300Hz sig-
nal. Also, R = 50 and the transition width is
fixed for each.
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(c) k = 20: Probability of successful recon-
struction vs. sparsity using the Basis Pursuit al-
gorithm for 1000 instances of Φ for each set of
parameters. The (x) and (o) marks are the RD
with a 150Hz and 200Hz signal. The (+) and
(♦) marks are the CRD with (d, k)=(1, 20) and
a 200Hz and 300Hz signal. The (*) marks are
the CRD with (d, k)=(2, 20) and a 300Hz sig-
nal. Also, R = 50 and the transition width is
fixed for each.

Fig. 3. Numerical Results

theoretical guarantees for these MS, we see that the singular values
are bounded close to 1 and nearly identical for both classes of MS.
This leads us to believe that the RIP will be satisfied, and we will not
see a significant performance hit if we use the more practical RLL
MS with k <∞. Again, for reference the RD uses (d, k)=(0,∞).

Fig. 3(b) and Fig. 3(c) plot the probability of successful recon-
struction as a function of the input signal sparsity, S. The curves
were obtained with different (d, k) sequences and signal bandwidth
W . Fig. 3(b) uses RLL MS with k = ∞ and for which we provide
a theoretical background of its performance. Fig. 3(c) uses RLL MS
with k = 20. Again, these MS do not provably become independent
and so do not exactly fit into our theoretical framework. The corre-
lation, however, decays quickly, and the performance is only slightly
degraded compared to the k = ∞ RLL MS. The d = 0 curve is
again the RD of [7] and provides the baseline for our comparison,
and all curves were created with a random waveform that switches
at the same rate. The CRD with d = 1 offers comparable perfor-
mance to the unconstrained RD but with the benefit of acquiring an
input signal with more bandwidth. Depending on the tolerance in re-
construction probability, the CRD can provide up to a 33% increase
in the acquirable bandwidth. Even at 50% greater bandwidth, the
CRD only reduces the sparsity by ∼4 (25%). This shows numeri-
cally that observable bandwidth can be increased with a slight to no
drop in the sparsity.

In summary, the RD shows that a sparse bandlimited signal can
be sampled not only based on the bandwidth of the signal, but also
the sparsity of the signal. The underlying hardware also gives a min-
imum transition width of the random waveform, so when at this limit
we are limited to viewing a bandwidthW with the RD. However, by
using RLL MS and creating a CRD, we can increase the bandwidth
up toW ′ ≤ (d+1)W if we are willing to incur a penalty in the spar-
sity of the signal. We also give a theoretical bound on this penalty
but believe that limit to be loose. Numerical simulations show that
only a small penalty is encountered for bandwidth increases of even
50%. Despite the sparsity penalty, we still gain a great advantage;
the RD is limited by the hardware to viewing signals of a particular
bandwidth while the CRD can look beyond this bandwidth.
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